На правах рукописи

Гирич Елена Валерьевна

Низкомолекулярные вторичные метаболиты грибов Южно-Китайского моря

1.4.9 – биоорганическая химия

Автореферат диссертации на соискание ученой степени кандидата химических наук

Владивосток – 2021

Работа выполнена в Тихоокеанском институте биоорганической химии им. Г. Б. Елякова ДВО РАН

Научный руководитель:	кандидат химических наук Юрченко Антон Николаевич
Официальные оппоненты:	Жидков Максим Евгеньевич кандидат химических наук, доцент, Дальневосточный федеральный университет, заведующий кафедрой органической химии ШЕН ДВФУ
	Яровая Ольга Ивановна доктор химических наук, доцент, Новосибирский институт органической химии им. Н. Н. Ворожцова СО РАН, ведущий научный сотрудник лаборатории физиологически активных соединений НИОХ СО РАН
Велушая организация.	Всероссийский научно-исспедовательский

ведущая организация:

Всероссийский научно-исследовательский институт защиты растений РАН, г. Санкт-Петербург

Защита состоится 29 ноября 2021 г. в 12 часов на заседании диссертационного совета 24.1.213.01 в Тихоокеанском институте биоорганической химии им. Г. Б. Елякова ДВО РАН по адресу: 690022. г. Владивосток, проспект 100 лет Владивостоку, 159. ТИБОХ ДВО РАН. Факс: (423)231-40-50, e-mail: dissovet@piboc.dvo.ru

С диссертацией можно ознакомиться в филиале Центральной научной библиотеки ДВО РАН (г. Владивосток, проспект 100 лет Владивостоку, 159, ТИБОХ ДВО РАН).

Текст диссертации и автореферата размещен на сайте <u>www.piboc.dvo.ru</u>

Автореферат разослан « » _____ 2021 г.

Ученый секретарь диссертационного совета, кандидат биологических наук

Quing 20va

Чингизова Е. А.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность проблемы. Одним из наиболее богатых источников биологически активных соединений с самого начала их поиска являются микроорганизмы, в частности грибы. Наземные экоформы грибов стали источниками нескольких десятков лекарственных средств от пенициллина и других антибиотиков, до ловастатина, первого коммерческого статина, и финголимода, первого перорального препарата для терапии рассеянного склероза, относительно недавно одобренного FDA и EMA. Однако, в настоящее время из грибов обычных наземных экосистем выделяются в основном известные метаболиты. При этом известно, что экстремальные условия обитания побуждают микроскопические грибы продуцировать наиболее необычные соединения. Одним из вариантов экосистем с экстремальными условиями является морская среда. Физические факторы, воздействующие на морские грибы – это высокое содержание ионов натрия, низкие температуры, олиготрофный тип питания, высокое гидростатическое давление – обуславливают способность морских грибов к синтезу необычных по структуре метаболитов, которые часто обладают разнообразной биологической активностью. Так, из морских грибов были выделены уникальные по структуре биологически активные соединения, которые не были обнаружены у наземных экоформ, несмотря на более чем 70-летнюю историю таких исследований. К таким соединениям относятся большое количество хлорсодержащих метаболитов, макролиды и пептиды с высокой антивирусной активностью. Среди морских грибов были найдены продуценты соединений с фермент-ингибирующей, противовоспалительной, антифунгальной и антибактериальной активностью, в том числе в отношении лекарственно устойчивых штаммов бактерий.

<u>Цель и задачи исследования.</u> Целью настоящей работы являлось выделение и установление строения вторичных метаболитов факультативных морских грибов, изолированных из различных субстратов, собранных у вьетнамского побережья Южно-Китайского моря.

Для достижения цели были поставлены следующие задачи:

1) провести отбор новых перспективных грибов-продуцентов, выделенных из различных субстратов, собранных у вьетнамского побережья Южно-Китайского моря;

2) выделить индивидуальные природные соединения из экстрактов изолятов отобранных грибов;

3) установить строение новых метаболитов и идентифицировать ранее известные соединения;

4) исследовать биологическую активность выделенных соединений.

Научная новизна и практическая ценность работы. Из экстрактов штаммов Penicillium sp. КММ 4672, Aspergillus flocculosus 01NT.1.12.3, A. niveoglaucus 01NT.1.10.4 и A. terreus LM.1.5, выделенных из различных субстратов Южно-Китайского моря, в результате хроматографического разделения было выделено 61 индивидуальное соединение различной химической природы. При помощи спектральных методов анализа и химических превращений установлено строение 17 новых соединений: четырех дикетопиперазиновых, трех эпидитиодикетопиперазиновых, одного бисиндолбензофуранового и одного триптаминового алкалоидов, меросесквитерпеноида, трех поликетидных производных, двух сесквитерпеноидов, трех циклотрипептидных производных. Идентифицированы структуры 44 ранее описанных соединений.

Впервые исследована цитотоксическая активность и влияние на рост колоний опухолевых клеток ряда метаболитов морских грибов. Впервые изучена нейропротекторная активность ряда известных соединений.

Практическое значение данного исследования состоит в обнаружении штаммов морских грибов - продуцентов противоопухолевых и нейропротекторных низкомолекулярных метаболитов. Новые и известные соединения с высокой биологической активностью являются перспективными для дальнейшего исследования в качестве лекарственных препаратов.

Положения, выносимые на защиту.

1) Морской гриб *Penicillium* sp. КММ 4672 является богатым источником дикетопиперазиновых алкалоидов и поликетидных соединений.

2) Морской гриб Aspergillus niveoglaucus 01NT.1.10.4 продуцирует новые поликетидные производные нивеоглауцины А и В, а также ряд известных пренилированных индолдикетопиперазиновых алкалоидов, среди которых (+)- и (-)-криптоэхинулины В, впервые выделенные из рацематной смеси как индивидуальные соединения.

3) Предложена возможная схема биосинтеза новых метаболитов гриба *A. niveoglaucus* 01NT.1.10.4 из общего предшественника – ауроглауцина.

4) Морской гриб *A. terreus* LM.1.5 продуцирует новые трипептидные производные, содержащие фрагмент коричной кислоты, а также является богатым источником бисиндолбензохиноновых алкалоидов.

5) Морской гриб *A. flocculosus* 01NT.1.12.3 является источником новых биологически активных дримановых сесквитерпеноидов и их нитробензоильных эфиров, а также тетрациклических меротерпеноидов.

<u>Апробация работы.</u> Материалы работы были представлены на III Всероссийской студенческой конференции с международным участием «Химия и химическое образование XXI века» (г. Санкт- Петербург, 2015 г.), 1st Russian-Vietnamese Workshop on Marine Fungal Metabolites and Their Bioactivities (Нячанг, Вьетнам, 2017 г.), международном симпозиуме 3rd International Symposium on Life Science (г. Владивосток, 2018 г.), Научной конференции, посвященной 55-летию ТИБОХ ДВО РАН и 90-летию со дня рождения его основателя академика Г.Б. Елякова (Владивосток, 2019 г.), международном симпозиуме XVI International Symposium on Marine Natural Products & XI Еuropean Conference on Marine Natural Products (г. Пенише, Португалия, 2019 г.) и XVII Всероссийской молодежной онлайн школы-конференции ТИБОХ ДВО РАН «Актуальные проблемы химии и биологии» (г. Владивосток, 2020 г.)

<u>Публикации.</u> По теме диссертации опубликовано 12 печатных работ в рецензируемых журналах, рекомендуемых ВАК Минобрнауки России.

<u>Личный вклад автора в проведение исследования.</u> Автором был выполнен анализ литературных данных по теме исследования, планирование экспериментов, получена основная часть результатов, написаны статьи и сделаны доклады на конференциях. На защиту вынесены только те положения и результаты, в получении которых роль автора была определяющей.

<u>Структура и объем диссертации.</u> Диссертация состоит из введения, литературного обзора, посвященного некоторым классам вторичных метаболитов морских грибов, выделенных из различных субстратов Южно-Китайского моря, обсуждения результатов, экспериментальной части, выводов и списка литературы, включающего 221 цитируемую работу. Работа изложена на 171 странице, содержит 24 таблицы и 47 рисунков.

Благодарности. Автор выражает глубокую признательность своему научному руководителю к.х.н. Юрченко А.Н. Также автор благодарит Сметанину О.Ф. за бесценную помощь в работе, сотрудников Нячангского научного института прикладных технологий (г. Нячанг, Вьетнам) Phan Thi Hoai Trinh, Ngo Thi Duy Ngoc, д.б.н. Пивкина М.В., к.б.н. Худякову Ю.В., к.б.н. Киричук Н.Н. за выделение, наращивание и определение исследованных штаммов грибов и исследование антибактериальной активности выделенных соединений, д.х.н. Калиновского А.И. и Расина А.Б. за получение ЯМР-спектров, к.х.н. Попова Р.С. за получение масс-спектров, к.х.н. Журавлеву О.И., к.х.н. Колесникову С.А. и к.х.н. Ляхову Е.Г. за полезные научные консультации, к.ф.-м.н. Глазунова В.П. и Ким Н.Ю. за получение ИК, УФ и КД-спектров, Бердышева Д.В. за полный конформационный анализ выделенных соединений расчетными методами, к.б.н. Юрченко Е.А., к.б.н. Менчинскую Е.С., к.б.н. Пислягина Е.А., к.б.н. Чингизову Е.А., д.б.н. Дышлового С.А., и сотрудников лаборатории экспериментальной онкологии Университетского медицинского центра Гамбург-Эппендорф (г. Гамбург,

Германия) Gunhild von Amsberg и Jessica Hauschild за проведение испытаний биологической активности выделенных соединений.

Некоторые используемые сокращения: ВЭЖХ – высокоэффективная жидкостная хроматография; ТСХ – тонкослойная хроматография; HRESIMS – масс-спектрометрия высокого разрешения с ионизацией электрораспылением; COSY – корреляционная спектроскопия; DEPT – неискаженное улучшение переносом поляризации; HMBC – гетероядерная корреляция через несколько связей; HSQC – гетероядерная одноквантовая когерентность; ROESY – двумерная спектроскопия ядерного эффекта Оверхаузера во вращающейся системе координат; ИК-спектроскопия – спектроскопия в инфракрасных лучах; КД – круговой дихроизм; КССВ – константа спин-спинового взаимодействия РСА – рентгеноструктурный анализ; УФ-спектроскопия – спектроскопия в ультрафиолетовой (УФ) области электромагнитного спектра; МТРА –α-метокси-α-(трифторметил)фенилуксусная кислота; 3-ГИМК – 3-гидроксиизомасляная кислота; ДФПГ – дифенилпикрилгидразил; 6-ГД – 6-гидроксидофамин; ЮКМ – Южно-Китайское море.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Скрининг

Для поиска перспективных источников биологически активных соединений был выделен 451 изолят морских микроскопических грибов из различных субстратов вьетнамского побережья ЮКМ. Далее были получены этилацетатные экстракты каждого гриба и протестированы методом TCX. На основании полученных данных для дальнейшей работы были выбраны следующие штаммы: *Penicillium* sp. KMM 4672, *Aspergillus niveoglaucus* 01NT.1.10.4, *A. flocculosus* 01NT.1.12.3 и *A. terreus* LM.1.5.

Установление строения индивидуальных соединений из Penicillium sp. КММ 4672

Гриб был выделен с поверхности бурой водоросли *Padina* sp., собранной в заливе Ванфонг, Южно-Китайское море.

Из этилацетатного экстракта гриба *Penicillium* sp., культивированного на рисовой среде, были получены новые спиробензофурандикетопиперазины цитриперазины А-D (1-4), новые эпидитиодикетопиперазиновые производные претриходермамиды D-F (5-7) вместе с двумя известными аналогами претриходермамидом С и N-метилпретриходермамидом B, новым оксотриптаминовым алкалоидом 6-гидрокси-N-ацетил-β-оксотриптамином (8), а также другие известные соединения: 4-гидроксисциталон, 4-гидрокси-6-дегидроксиксциталон, деметилцитреовиранол, 6-метилкурвулиновая кислота, бензохиноны ансеринон В и (+)-3,5-диметил-8-метокси-3,4-дигидро-1Н-изохромен-6-ол, формилансеринон Β. хинолинпиролизиновый алкалоид хинолактацид, 4-гидрокси-3,6-диметил-2-пирон, 4метоксиизохинолин-1(2H)-он, N, N-диэтил-3-метилбензамид (ДЭТА) и 3-О-метилорселиновая кислота.

Брутто-формула соединения 1 была определена как $C_{13}H_{16}N_2O_2S_2$ с помощью данных HRESIMS (пик катионированной молекулы [M+Na]⁺ при *m/z* 319.0551), что соответствовало данным спектра ¹³С ЯМР. Тщательный анализ данных спектров ¹H и ¹³С ЯМР соединения 1, а также спектров DEPT и HSQC, показал наличие двух амидных протонов (δ_H 8.97, 8.73), двух S-метильных (δ_C 15.0, 13.3, δ_H 2.21, 2.27), одной метиленовой (δ_C 42.9, δ_H 3.50, 2.96), шести олефиновых метиновых (δ_C 130.5, 2C, 127.8, 2C, 126.8, 57.9, δ_H 7.26, 2H, 7.23, 3H, 4.52) групп. Остальные функциональные группы, соответствующие сигналам углерода при δ_C 165.0 (C), 164.4 (C), 135.2 (C) и 65.3 (C) предполагают наличие двух амидных групп, полностью замещенного *sp*²-гибридизованного и одного четвертичного *sp*³-гибридизованного атомов углерода.

НМВС-корреляции (рисунок 1) от H-1 ($\delta_{\rm H}$ 8.97) к C-3 ($\delta_{\rm C}$ 57.9) и C-5 ($\delta_{\rm C}$ 164.4), от H-4 ($\delta_{\rm H}$ 8.73) к C-2 ($\delta_{\rm C}$ 165.0) и C-6 ($\delta_{\rm C}$ 65.3), а также от H-3 ($\delta_{\rm H}$ 4.52) к C-2 позволяют установить структуру дикетопиперазинового кольца. Положение S-метильных групп C-15 ($\delta_{\rm C}$ 13.3) и C-14 ($\delta_{\rm C}$ 15.0) при C-3 и C-6 соответственно, было выявлено взаимными HMBC-корреляциями

HC-3/H₃C-14 и HMBC-корреляциями от H₃-15 к C-6. Группа мультиплетов в протонном спектре при 7.19–7.27 м.д. общей интенсивностью в пять протонов характерна для монозамещенного бензольного кольца, что подтверждается данными спектра ¹³C ЯМР и эксперимента HSQC. HMBC-взаимодействия от H₂-7 ($\delta_{\rm H}$ 2.96, 3.50) к C-5, C-6 и C-8 и от H-9 ($\delta_{\rm H}$ 7.26) и H-13 ($\delta_{\rm H}$ 7.26) к C-7 ($\delta_{\rm C}$ 42.9) позволяют установить полную структуру соединения 1.

Рисунок 1 – Структура (a) и основные HMBC-взаимодействия (б) цитриперазина A (1)

Величина КССВ Н-3 и Н-4 (³*J* = 3.4 Гц) и величина химических сдвигов тиометильных групп позволили установить относительную конфигурацию стереоцентров дикетопиперазинового кольца.

Сравнение данных ¹Н и ¹³С ЯМР соединения **1** и известного дикетопиперазинового алкалоида фузаперазина А демонстрирует их близкое сходство, за исключением сигналов бензольного фрагмента. Отличие молекулярной массы на 16 единиц между **1** и фузаперазином А, а также различие в значении химсдвигов в ароматической части позволяют предположить, что соединение **1** является дегидроксилированным производным фузаперазина А. Соединение **1** было названо цитриперазином А.

Абсолютные конфигурации всех стереоцентров известного фузаперазина A ранее были опубликованы как 3*S*, 6*S*. Сходство данных ЯМР соединения **1** и фузаперазина A вместе с разницами значений величин оптического вращения ($[\alpha]_D^{20}$ +47.1 и –110.8 соответственно) позволило предположить конфигурации 3*R*,6*R* для цитриперазина A. Это было подтверждено данными КД-спектроскопии и конформационным анализом с использованием нестационарной теории функционала плотности. Сравнение экспериментального и статистически усредненного теоретического спектров КД соединения **1** представлено на рисунке 2.

Рисунок 2 – Нормализованные экспериментальный (черный) и расчетный (розовый) спектры КД соединения **1**

НRESIMS соединения **2** содержал пик катионированной молекулы $[M+Na]^+$ при m/z 319.0551, что позволило определить его брутто-формулу как $C_{13}H_{16}N_2O_2S_2$, соответствующую пяти степеням ненасыщенности. Анализ спектров ¹H и ¹³С ЯМР выявил наличие двух S-метильных (δ_H 1.13, δ_C 9.2; δ_H 2.16, δ_C 12.6), одной метиленовой (δ_H 2.90, 3.48, 42.0 δ_C), четырех метиновых (δ_H 5.02, δ_C 57.3; δ_H 7.23, δ_C 126.9; δ_H 7.26, δ_C 127.8; δ_H 7.23, δ_C 130.8) и двух амидных карбонильных групп (δ_C 163.7, 164.3). Оставшиеся сигналы указывают на наличие замещенного ароматического (δ_C 135.1) и четвертичного (δ_C 67.5) атомов углерода.

Рисунок 3 – Структура (**a**) и основные HMBC-корреляции (**б**) цитриперазина B (2)

Сравнение спектральных характеристик соединения **2** с цитриперазином A (**1**) показало их близкое сходство, за исключением сигналов CH-3 (δ_C 57.3, δ_H 5.02) и CH₃-15 (δ_C 9.2, δ_H 1.13) и значительной разницы вицинальных КССВ ${}^3J_{H3-H4}$ в соединениях **2** (1.7 Гц) и **1** (3.4 Гц), что, в совокупности с литературными данными для фузаперазинов A и B, позволило предположить стереоизомерность этих соединений по C-3. Таким образом, стереоконфигурации хиральных центров **2** были определены как 3*S*,6*R* (рисунок 3). Соединение **2** было названо цитриперазином B.

Цитриперазин С (3) был выделен как аморфное бесцветное соединение. Брутто-формула соединения 3 была установлена как $C_{19}H_{18}N_2O_5S$ на основании данных HRESIMS (пик катионированной молекулы [M+Na]⁺ при *m*/*z* 409.0832) и подтверждена данными ¹³С ЯМР.

Рисунок 4 – Основные ¹Н-¹Н COSY (а), основные НМВС взаимодействия (б) и структура МТРА-эфиров (в) цитриперазина С (3)

Спектры ¹Н и ¹³С ЯМР соединения **3** содержат сигналы двух амидных протонов ($\delta_{\rm H}$ 9.32, 8.18), протона гидроксигруппы ($\delta_{\rm H}$ 5.50), S-метильной ($\delta_{\rm C}$ 13.1, $\delta_{\rm H}$ 2.32), метиленовой ($\delta_{\rm C}$ 43.1, $\delta_{\rm H}$ 3.54, 3.03), оксигенированной метиновой ($\delta_{\rm C}$ 73.5, $\delta_{\rm H}$ 4.88) и двух амидных карбонильных $(\delta_{\rm C} 165.2, 164.3)$ групп, а также двух четвертичных *sp*³-гибридизованных атомов углерода ($\delta_{\rm C}$ 90.7, 66.1). Оставшиеся сигналы были отнесены к моно- ($\delta_{\rm C}$ 130.3, 2C, 127.9, 2C, 126.9; $\delta_{\rm H}$ 7.20-7.29, 5Н-мультиплет) и тризамещенному бензольным кольцам ($\delta_{\rm C}$ 121.6, 116.7, 115.4; $\delta_{\rm H}$ 6.65-6.71, 3Н-мультиплет). НМВС-корреляции (рисунок 4б) от H₂-3 ($\delta_{\rm H}$ 3.54, 3.03) к С-7 ($\delta_{\rm C}$ 126.9) и C-5/9, от H-6/8 (бн 7.24) к C-4 (бс 134.7) к C-8/6 (бс 127.9), и от H₃-10 (бн 2.32) к C-2 позволяют определить остаток β-фенилаланина с S-метилом в качестве α-заместителя. Другая часть 2,5-дикетопиперазинового кольца была установлена с помощью анализа НМВСкорреляций от 2-NH ($\delta_{\rm H}$ 9.32) к C-1 ($\delta_{\rm C}$ 165.2) и C-2' ($\delta_{\rm C}$ 90.7) и от 2'-NH ($\delta_{\rm H}$ 8.18) к C-2 ($\delta_{\rm C}$ 66.1) и С-1' (*б*с 164.3). НМВС-корреляции от Н-3' (*б*_H 4.88) к С-1', С-2' (*б*с 90.7), С-4' (*б*с 129.3), С-5' ($\delta_{\rm C}$ 115.4) и С-9' ($\delta_{\rm C}$ 144.5), от 2'-NH к С-3' ($\delta_{\rm C}$ 73.5), от Н-5' ($\delta_{\rm H}$ 6.67) к С-3', С-7' ($\delta_{\rm C}$ 116.7) и С-9', вместе с слабопольными химсдвигами атомов С-2', С-6', С-7', С-8' ($\delta_{\rm C}$ 141.1) и С-9' выявили структуру замещенного дигидробензофуранового фрагмента со спиросоединением с дикетопиперазиновым кольцом при С-2'. Наличие двух гидроксигрупп при С-3' и при ароматическом С-8' было предположено на основании характерных значений химических сдвигов атомов углерода, связанных с гидроксильными группами. Кроме того, расположение ОН-группы при С-3' было подтверждено ¹H-¹H COSY взаимодействиями (рисунок 4a) между 3'-ОН ($\delta_{\rm H}$ 5.51) и H-3' и вицинальной КССВ ($^{3}J_{\rm HH}$ 8.0 Гц). К сожалению, взаимное перекрытие двух сигналов ароматических протонов в бензофурановой части не позволило точно отнести сигналы ароматических протонов и атомов углерода в положениях С-6', С-7' и С-8'.

Спектр ROESY соединения **3** не содержит каких-либо корреляций, которые можно использовать для установления его стереохимии. Тем не менее, была предпринята попытка применить модифицированный метод Мошера для определения абсолютной конфигурации стереоцентра C-3'. Соединение **3** обработали (R)- и (S)-МТРА-хлорангидридами, что привело

к получению соответствующих 3',8'-МТРА-диэфиров (рисунок 4в). Структура бензофуранового фрагмента была точно установлена анализом КССВ (для (*S*)-МТРА-эфира) H-5' ($\delta_{\rm H}$ 7.30, уш.д, 7.7 Гц), H-6' ($\delta_{\rm H}$ 7.06, т, 7.7 Гц) и H-7' ($\delta_{\rm H}$ 7.21, д, 7.7 Гц) вместе с HMBC взаимодействиями от H-5' к C-7' ($\delta_{\rm C}$ 124.1), C-9' ($\delta_{\rm C}$ 148.2), от H-7' к C-9', и от H-6' к C-4' ($\delta_{\rm C}$ 124.9) и C-8' ($\delta_{\rm C}$ 132.1). К сожалению, разница химических сдвигов в спектрах ¹H ЯМР указывала на неприменимость метода Мошера к данному соединению.

Молекулярная формула цитриперазина D (4) была определена $C_{18}H_{16}N_2O_6$ на основании данных HRESIMS (пик депротонированной молекулы $[M-H]^-$ при m/z 355.0936) и подтверждена данными ¹³С ЯМР. Общие характеристики спектров ¹H и ¹³С ЯМР соединения 4 напоминали таковые у цитриперазина С (3), за исключением отсутствия S-метильного сигнала и различий химических сдвигов при C-2 и его ближайшем окружении (2-NH, C-1 и C-3). HMBC-корреляции от H-3 (δ_H 3.41, 2.91) к C-1 (δ_C 167.1), C-2 (δ_C 81.9), C-4 (δ_C 134.7) и C-5/9 (δ_C 130.4), от 2-NH (δ_H 9.13) к C-1 и C-2' (δ_C 90.8), и от 2'-NH (δ_H 8.00) к C-2 и C-1' (δ_C 164.8) (рисунок 56) были идентичны таковым у соединения **3** и позволили предположить, что соединение **4** является 2-гидрокси-2-детиометильным производным цитриперазина С (**3**).

Рисунок 5 – Основные ¹H-¹H COSY (**a**) и ключевые HMBC взаимодействия (**б**) цитриперазина D (**4**)

Все возможные конформации цитриперазина D (4) были исследованы *in silico*, и полученные результаты были сопоставлены с экспериментальными данными. Полный конформационный анализ всех возможных стереоизомеров соединения 4 был выполнен с использованием нестационарной теории функционала плотности и последующих расчетов спектров КД для отдельных конформеров.

Рисунок 6 – Сравнение экспериментального (черный) и расчетного (красный) КД спектров соединения 4

Также было выполнено моделирование реальных сольватных оболочек для стереоизомера *RRR*. В результате была определена конформация молекулы, при которой в коротковолновой части спектра (200 нм < λ <240 нм) расчетные спектры КД (рисунок 6) хорошо накладывались на экспериментальные. Более того, для всех возможных стереоизомеров была рассчитана величина угла удельного оптического вращения ($[\alpha]_D^{20}$). Полученные $[\alpha]_D^{20}$ –85.7 для стереоизомера *RRR* соответствовали экспериментальным $[\alpha]_D^{20}$ –65.6. Таким образом, полученные данные однозначно подтвердили абсолютные конфигурации 2*R*2'*R*3'*R* для соединения **4**.

Основываясь на аналогичных значениях оптического вращения и данных КД цитриперазинов С ($[\alpha]_D^{20}$ –59.6) и D ($[\alpha]_D^{20}$ –65.6), мы предложили идентичные абсолютные конфигурации для **3** и **4**.

Спектр HRESIMS соединения **5** содержит пик депротонированной молекулы [M–H][–] при m/z 511.0857, соответствующий брутто-формуле C₂₁H₂₄N₂O₉S₂, которая хорошо согласуется с данными ¹³С ЯМР. Спектры ¹H и ¹³С ЯМР содержат сигналы двух метоксильных групп (δ_{C} 60.2, 55.6; δ_{H} 3.78, 3.68), одной N-метильной (δ_{C} 32.5; δ_{H} 2.99), одной метиленовой (δ_{C} 38.4; δ_{H} 2.33, 2.17) групп, восьми метиновых групп (δ_{C} 133.8, 127.4, 81.9, 66.9, 66.2, 66.0, 65.8, 41.4; δ_{H} 5.60, 5.56, 5.26, 4.56, 4.55, 4.12, 4.03, 3.74) и двух *sp*³-гибридизованных четвертичных атомов углерода (δ_{C} 68.0, 66.9). Остальные функциональные группы, соответствующие углеродным сигналам при δ_{C} 165.4, 164.2, 153.0, 147.6, 135.9 и 116.3, позволяют предположить наличие двух амидных карбонильных атомов углерода, трех оксигенированных и одного Сзамещенного *sp*²-гибридизованного атомов углерода.

Прямое сравнение ¹Н и ¹³С ЯМР-спектров **5** со спектрами претриходермамида С показало их близкое сходство, включая сигналы двух метоксильных ($\delta_{\rm H}$ 3.68, 3.78; $\delta_{\rm C}$ 55.7, 60.2), N-метильной ($\delta_{\rm H}$ 2.96; $\delta_{\rm C}$ 32.6), фенольной гидроксильной ($\delta_{\rm H}$ 9.43), двух ароматических метиновых ($\delta_{\rm H}$ 6.55, 7.32; $\delta_{\rm C}$ 103.3, 122.6) и двух амидных карбонильных ($\delta_{\rm C}$ 164.2, 165.4) групп. Таким образом, было сделано предположение, что **5** имеет структуру, аналогичную претриходермамиду С.

НМВС-корреляции от H-3 ($\delta_{\rm H}$ 2.17, 2.33) к C-4 ($\delta_{\rm C}$ 66.9), C-5 ($\delta_{\rm C}$ 133.8) и C-9 ($\delta_{\rm C}$ 81.9), от 4-OH ($\delta_{\rm H}$ 5.26) к C-3 ($\delta_{\rm C}$ 38.4), C-4, C-5 и C-9, от H-9 ($\delta_{\rm H}$ 4.12) к C-8 ($\delta_{\rm C}$ 66.2), и от H-7 ($\delta_{\rm H}$ 4.03) к C-5, C-6 ($\delta_{\rm C}$ 127.4) и C-8 позволили установить наличие циклогексанового кольца с двойной связью C-5–C-6. Расположение вторичных гидроксильных групп при C-7 и C-8 было подтверждено HMBC-корреляциями от 7-OH ($\delta_{\rm H}$ 4.89) к C-7 и от 8-OH ($\delta_{\rm H}$ 4.35) к C-8. Таким образом была установлена «плоская» структура соединения **5**.

Рисунок 7 – Значения $\Delta \delta (\delta_{\rm S} - \delta_{\rm R})$ (в Гц) для МТРА-эфиров соединения 5

Обработка соединения 5 хлорангидридами (*R*)- и (*S*)-МТРА привела к этерификации гидроксильных групп при С-7 и С-9' и образованию (*S*)- и (*R*)-бис-МТРА эфиров соответственно. Наблюдаемые химические сдвиги $\Delta\delta$ ($\delta_S - \delta_R$) (рисунок 7) указывают на конфигурацию 7*R*. Абсолютные конфигурации оставшихся стереоцентров в циклогексеновом кольце были установлены как 4*S*,8*R*,9*S* так же, как в адаметизине В (претриходермамиде С) и адаметизине А (N-метилпретриходермамиде В) на основании ROESY взаимодействий (рисунок 19) 7-OH с H-9 и H-9 с 4-OH и 8-OH, а также величин КССВ ³*J*_{H8-H9} (9.4 Гц) и ³*J*_{H7-H8} (4.6 Гц), которые соответствовали рассчитанным двугранным углам (177° и 46° соответственно). Абсолютные конфигурации при С-2, С-2' и С-3' были определены как такие же, что и у известных адаметизина А и адаметизина В, на основе совпадения химических сдвигов С-2, С-2' и С-3' для этих, очевидно, биогенетически родственных соединений. Соединение **5** было названо претриходермамидом D.

Брутто-формула соединения **6** была определена как C₂₁H₂₄N₂O₉C₂ на основании HRESIMS пика депротонированной молекулы $[M-H]^-$ при *m/z* 511.0869 и данным ¹³C ЯМР. Основные спектральные характеристики ¹H и ¹³C ЯМР соединения **6** соответствовали таковым для соединения **5**, за исключением протонных и углеродных сигналов C-7 и C-8. HMBC-корреляции от H-7 ($\delta_{\rm H}$ 3.96) к C-6 ($\delta_{\rm C}$ 129.7) и C-8 ($\delta_{\rm C}$ 71.0), от H-9 ($\delta_{\rm H}$ 3.83) к C-4 ($\delta_{\rm C}$ 67.0) и C-8 и от 4-OH ($\delta_{\rm H}$ 5.29) к C-3 ($\delta_{\rm C}$ 39.0), C-5 ($\delta_{\rm C}$ 131.8) и C-9 ($\delta_{\rm C}$ 83.4) позволили доказать, что «плоская» структура соединения **6** идентична структуре претриходермамида D (**5**). Вицинальные КССВ *J*_{H7-H8} (7.7 Гц) и *J*_{H8-H9} (10.7 Гц) в соответственно) указывают на аксиальное расположение протонов H-7, H-8 ($\delta_{\rm H}$ 3.56) и H-9. Такие относительные конфигурации были также подтверждены ROESY-взаимодействиями между H-7 и 8-OH ($\delta_{\rm H}$ 4.64) и H-9. Абсолютные конфигурации стереоцентров соединения **6** на основании биогенетических соображений были определены такими же, как и для претриходермамида D. Таким образом, соединение **6** является эпимером претриходермамида D по C-7 и было названо претриходермамидом E.

Рисунок 8 – Энергетически минимизированные 3D-модели соединений **5–7**. Ключевые ROESY корреляции показаны стрелками

Молекулярная формула соединения 7 была определена как $C_{21}H_{24}N_2O_9S_2$ (идентично соединениям 5 и 6) на основании данных HRESIMS и ¹³С ЯМР. Данные ЯМР для этого соединения были очень похожи на данные, полученные для претриходермамида C, за исключением сигналов протонов и атомов углерода при C-3, C-4, C-5, C-6 и C-9. HMBC-корреляции от H-5 (δ_H 3.69) к C-3 (δ_C 35.6), C-4 (δ_C 67.4), C-6 (δ_C 126.9) и C-7 (δ_C 131.2), от H-8 (δ_H 4.16) к C-7 и C-9 (δ_C 83.5), а также от H-9 (δ_H 3.97) к C-4 и C-8 (δ_C 64.6) позволяют установить плоскостную структуру циклогексенового кольца с двойной связью между C-6 и C-7. Взаимные ROESY-корреляции (рисунок 8) от H-9 к 4-OH (δ_H 4.96), 5-OH (δ_H 5.19) и 8-OH (δ_H 5.15) доказывают α -ориентацию 4-OH, таким образом, соединение 7 является эпимером претриходермамида C по C-4. Соединение 7 было названо претриходермамидом F.

Помимо новых претриходермамидов D–F (5-7), из этого гриба также были выделены известные претриходермамид С и N-метилпретриходермамид В. Впервые эти соединения были выделены из erипетского штамма *Penicillium* sp., изолированного из вод соленого озера, и позже были выделены из *Penicillium adametzioides*, ассоциированного с губкой, и опубликованы под названием адаметизины A и B соответственно. Претриходермамид С также был опубликован как метаболит эндофитного гриба *Penicillium raciborskii*, ассоциированного с багульником болотным (*Rhododendron tomentosum*) под названием оутовирин В. Абсолютная стереохимия для адаметизинов была определена на основе данных PCA и КД.

6-Гидрокси-N-ацетил-β-оксотриптамин (8) был выделен в виде белого твердого вещества. Спектр HRESIMS соединения 8 содержит пик депротонированной молекулы [M-H]⁻ при *m/z*

231.0772, который указывает на молекулярную формулу $C_{12}H_{12}N_2O_3$, соответствующую шести эквивалентам двойной связи. Тщательный анализ данных ЯМР соединения **8** выявил присутствие одной ацетатной метильной (δ_C 22.4; δ_H 1.90), одной метиленовой (δ_C 45.4; δ_H 4.38 (2H)), четырех метиновых (δ_C 131.9, 121.5, 111.9, 97.1; δ_H 8.17, 7.89, 6.80, 6.68) групп, четырех четвертичных *sp*²-гибридизованнных атомов углерода (δ_C 154.0, 137.6, 118.3, 114.1), одной кетогруппы (δ_C 189.9) и одного амидного карбонила (δ_C 169.3). Кроме того, спектр ЯМР ¹Н содержит сигнал трех гетероатомных протонов (δ_H 11.55, 9.14, 8.06).

Значения КССВ NH-1 ($\delta_{\rm H}$ 11.55, д, J = 2.9 Гц), H-2 ($\delta_{\rm H}$ 8.17, д, J = 2.9 Гц), H-4 ($\delta_{\rm H}$ 7.89, д, J = 8.6 Гц), H-5 ($\delta_{\rm H}$ 6.68, дд, J = 8.6, 1.7 Гц) и H-7 ($\delta_{\rm H}$ 6.80, д, J = 1.7 Гц) вместе с HMBC корреляциями (рисунок 9б) от NH-1 к C-3a ($\delta_{\rm C}$ 118.3), от H-2 к C-3a и C-7a ($\delta_{\rm C}$ 137.6), от H-4 к C-3 ($\delta_{\rm C}$ 114.1), C-6 ($\delta_{\rm C}$ 154.0) и C-7a, от H-5 до C-3a и C-7 ($\delta_{\rm C}$ 97.1), от H-7 к C-3a и C-5 и от 6-OH ($\delta_{\rm H}$ 9.14) к C-5, C-6 и C-7 указывают на присутствие индольного фрагмента с OH-группой при C-6. Это предположение дополнительно подтверждается ROESY взаимодействиями между H-1/H-7. HMBC корреляции от метиленовых H-2' ($\delta_{\rm H}$ 4.38) к C-1' ($\delta_{\rm C}$ 189.9) и C-4' ($\delta_{\rm C}$ 169.3), от NH-3' ($\delta_{\rm H}$ 8.06) к C-4' и от H-5' ($\delta_{\rm H}$ 1.90) к C-4' позволили определить структуру боковой цепи. Расположение боковой цепи у C-3 было установлено с помощью ROESY взаимодействий от H-2' к H-2 и H-4. Таким образом, выяснилось, что структура **8** очень близка к структуре известного N-ацетил- β -оксотриптамина, отличаясь наличием гидроксильной группы при C-6.

Рисунок 9 – Структура (а) и ключевые НМВС (стрелки) и ROESY (двойные стрелки) (б) корреляции соединения 8

Мелатониноподобные соединения, близкие по структуре к 6-гидрокси-N-ацетил-βоксотриптамину (8), являются характерными метаболитами некоторых видов бактерий, но в грибах практически не встречаются. Это второй случай выделения триптаминовых алкалоидов из микроскопических грибов.

Также из гриба *Penicillium* sp. КММ 4672 выделен ряд известных метаболитов: 6метилкурвулиновая кислота, ансеринон В, (+)-формилансеринон В, 3,5-диметил-8-метокси-3,4-дигидро-1Н-изохромен-6-ол, хинолактацид, 4-гидрокси-3,6-диметил-2-пирон, 4метоксиизохинолин-1(2H)-он, N,N-диэтил-3-метилбензамид (ДЭТА), 3-О-метилорселиновая кислота, 4-гидроксисциталон, 4-гидрокси-6-дегидроксисциталон и деметилцитреовиранол.

Стоит отметить, что метилкурвулиновая кислота и 4-гидрокси-3,6-диметил-2-пирон впервые описаны как метаболиты морского гриба. Бензохиноны ансеринон В и (+)-формилансеринон В впервые выделены из морского гриба, ассоциированного с водорослями. 4-Метоксиизохинолин-1(2H)-он и ДЭТА являются известными синтетическими производными, но в качестве природных описаны впервые.

Установление строения индивидуальных соединений из Aspergillus flocculosus

Изолят гриба A. *flocculosus* 01NT.1.12.3 был выделен из образца донных осадков (провинция Кхань Хоа, Вьетнам, Южно-Китайское море).

Из гриба A. flocculosus 01NT.1.12.3, культивированного на рисовой среде, были выделены новый меротерпеноид 12-э*пи*-аспертетранон D (9), вместе с известными аспертетранонами A и D, два новых сесквитерпеноида $9\alpha,6\beta,14$ -тригидроксициннамолид (10) и $6\beta,7\beta,14$ -тригидроксиконфертифолин (11) и их известные *n*-нитробензоильные производные инсуликолид A и 7α -14-дигидрокси- 6β -*n*-нитробензоилконфертифолин, известный тетракетид

аспилактонол F вместе со своим новым диастереоизомером аспилактонолом G (12), а также известные соединения дигидроаспирон и дикетопиперазиновый алкалоид мактанамид.

Брутто-формула соединения **9** была определена как C₂₂H₂₈O₉ на основании данных HRESIMS (пик катионированной молекулы [M+Na]⁺ при *m*/z 459.1628), что соответствовало данным ¹³C ЯМР спектров. Детальный анализ ¹H и ¹³C ЯМР-спектров показал наличие шести метильных (δ_C 25.1, 24.0, 18.5, 17.3, 10.8, 9.5; δ_H 2.24, 1.89, 1.43, 1.41, 1.39, 1.31), метиленовой (δ_C 45.6; δ_H 2.86, 2.76), двух метиновых (δ_C 39.5, 39.3; δ_H 2.32, 2.00), двух оксигенированных метиновых (δ_C 75.15, 63.5; δ_H 4.63, 4.36) групп, одного четвертичного *sp*³-гибридизованного (δ_C 55.5), трех оксигенированных четвертичных *sp*³-гибридизованных (δ_C 107.3, 102.2) и трех оксигенированных четвертичных *sp*²-гибридизованных атомов углерода (δ_C 164.4, 162.5, 157.9), а также двух кето-групп (δ_C 211.4, 209.1).

НМВС-корреляции соединения **9** (рисунок 9) показывают наличие линейной тетрациклической структуры, подобной известным меросесквитерпеноидам аспертетранонам А-D. Основные сигналы в спектре ¹³С ЯМР соединения **9** были близки к таковым для аспертетранона D, за исключением сигналов С-6, С-11, С-11а, С-12, С-15 и С-18 атомов углерода. Основные эффекты Коттона в экспериментальном спектре КД соединения **9** в метаноле соответствовали таковым для аспертетранона D.

Значение вицинальной КССВ между H-11a и H-12 (9.4 Гц) в соединении **9** (вместо ${}^{3}J_{\text{H11a-}}_{\text{H12}}$ = 3.9 Гц в аспертетраноне D) указывает на β -ориентацию гидроксильной группы при C-12. Таким образом, абсолютная конфигурация хиральных центров в соединении **9** была установлена как 5aS, 6R, 6aR, 10aR, 11R, 11aS, 12S. Соединение **9** было названо 12-э*пи*-аспертетранон D.

Рисунок 9 – Структура (а) и ключевые НМВС взаимодействия (б) соединения 9

Молекулярная формула соединения **10** была установлена как $C_{15}H_{22}O_5$ на основании пика катионированной молекулы при m/z 305.1361 [M+Na]⁺ в спектре HRESIMS и подтверждена данными ¹³С ЯМР. Спектры ¹H и ¹³С ЯМР содержат сигналы двух метильных (δ_C 26.8, 20.8; δ_H 1.23, 1.15), пяти метиленовых (δ_C 75.0, 68.4, 42.0, 32.6, 17.6; δ_H 4.44, 4.41, 4.24, 3.42, 2.13, 1.63, 1.50, 1.50, 1.38, 1.24), трех метиновых (δ_C 139.1, 63.5, 47.1; δ_H 6.96, 4.62, 2.00), одной карбонильной (δ_C 169.6) групп, трех четвертичных sp^3 -гибридизованных (δ_C 77.5, 39.0, 38.3) и одного четвертичного sp^2 -гибридизованного атома углерода (δ_C 130.1).

Рисунок 10 – Структура (а) и основные НМВС корреляции (б) соединения 10

Тщательный анализ ¹H и ¹³С ЯМР данных соединения **10** выявил близкое сходство с данными ЯМР дримановой части известного инсуликолида А, за исключением сигналов С-3 (δ_{C} 42.0), С-6 (δ_{C} 63.5), С-7 (δ_{C} 139.1), С-8 (δ_{C} 130.1) и С-14 (δ_{C} 68.4). НМВС взаимодействия (рисунок 10б) от H-1a (δ_{H} 1.24) к С-13 (δ_{C} 26.8), от H-1b (δ_{H} 2.13) к С-2 (δ_{C} 17.6), С-3 (δ_{C} 42.0), С-5 (δ_{C} 47.1), С-9 (δ_{C} 77.5), С-10 (δ_{C} 39.0) и С-15 (δ_{C} 20.8), от H-2a (δ_{H} 1.50) к С-1 (δ_{C} 32.6), С-3, С-4 (δ_{C} 38.3), С-9, от H-2b (δ_{H} 1.50) к С-1, С-3, С-4, С-9, от H-3a (δ_{H} 1.38) к С-2, С-4, С-13 (δ_{C} 26.8), С-14 (δ_{C} 68.4), от H-3b (δ_{H} 1.63) к С-1, С-2, С-3, С-4, С-5 и С-14, от H-5 (δ_{H} 2.00) к С-4, С-6 (δ_{C} 63.5), С-9, С-13, С-14 и С-15, от H-6 (δ_{H} 4.62) к С-7, С-8 и С-10, от H-7 (δ_{H} 6.96) к С-5, С-9 и С-12 (δ_{C} 169.6), от H-11a (δ_{H} 4.24) к С-8, С-9 и С-12, от H-11b (δ_{H} 4.44) к С-9, от H₃-13 (δ_{H} 1.15) к С-4 и С-14, от H-14a (δ_{H} 3.42) к С-3, С-4 и С-5, от H-14b (δ_{H} 4.41) к С-13, от H₃-15 (δ_{H} 1.23) к С-4 и С-13 подтвердили дримановый скелет соединения **10** (рисунок 10а), идентичный таковому в инсуликолиде А.

ROESY взаимодействия H₃-13 с H-5 ($\delta_{\rm H}$ 2.00) и H-6, COSY корреляция W-типа H₃-15/H-5, а также вицинальная КССВ ³J_{H5-H6} = 4.4 Гц позволили установить относительные конфигурации стереоцентров C-4, C-5, C-6 и C-10. Абсолютные конфигурации хиральных центров соединения **10** были предложены на основании сходства спектров КД и очевидного биогенетического родства с инсуликолидом A, абсолютные стереоконфигурации которого были определены ранее методом РСА. Соединение **10** было названо 6 β ,9 α ,14-тригидроксициннамолидом.

Молекулярная формула соединения **11** была установлена как $C_{15}H_{22}O_5$ на основании пика катионированной молекулы при m/z 305.1361 [M+Na]⁺ в спектре HRESIMS, и подтверждена данными ЯМР. Спектры ¹H и ¹³С ЯМР соединения **11** содержат сигналы двух метильных (δ_C 27.9, 21.6; δ_H 1.40, 0.97), пяти метиленовых (δ_C 68.1, 65.6, 37.8, 37.8, 18.0; δ_H 4.94, 4.79, 3.94, 3.26, 1.71, 1.59, 1.54, 1.45, 1.32, 1.10), трех метиновых групп (δ_C 70.0, 64.1, 48.6; δ_H 6.96, 4.62, 2.00), двух четвертичных *sp*³-гибридизованных (δ_C 38.3, 36.3), двух четвертичных *sp*²-гибридизованных атомов углерода (δ_C 173.1, 122.1), трех гидроксильных (δ_H 5.37, 5.34, 5.23) и одной карбонильной группы (δ_C 173.4).

НМВС взаимодействия от H-1a ($\delta_{\rm H}$ 1.24) к C-13 ($\delta_{\rm C}$ 26.8), от H-1b ($\delta_{\rm H}$ 2.13) к C-2 ($\delta_{\rm C}$ 17.6), C-3 ($\delta_{\rm C}$ 42.0), C-5 ($\delta_{\rm C}$ 47.1), C-9 ($\delta_{\rm C}$ 77.5), C-10 ($\delta_{\rm C}$ 39.0) и C-15 ($\delta_{\rm C}$ 20.8), от H-2a ($\delta_{\rm H}$ 1.50) к C-1 ($\delta_{\rm C}$ 32.6), C-3, C-4 ($\delta_{\rm C}$ 38.3), C-9, от H-2b ($\delta_{\rm H}$ 1.50) к C-1, C-3, C-4, C-9, от H-3a ($\delta_{\rm H}$ 1.38) к C-2, C-4, C-13 ($\delta_{\rm C}$ 26.8), C-14 ($\delta_{\rm C}$ 68.4), от H-3b ($\delta_{\rm H}$ 1.63) к C-1, C-2, C-3, C-4, C-5 и C-14, от H-5 ($\delta_{\rm H}$ 2.00) к C-4, C-6 ($\delta_{\rm C}$ 63.5), C-9, C-13, C-14 и C-15, от H-6 ($\delta_{\rm H}$ 4.62) к C-7, C-8 и C-10, от H-7 ($\delta_{\rm H}$ 6.96) к C-5, C-9 и C-12 ($\delta_{\rm C}$ 169.6), от H-11a ($\delta_{\rm H}$ 4.24) к C-8, C-9 и C-12, от H-11b ($\delta_{\rm H}$ 4.44) к C-9, от H₃-13 ($\delta_{\rm H}$ 1.15) к C-4 и C-14, от H-14a ($\delta_{\rm H}$ 3.42) к C-3, C-4 и C-5, от H-14b ($\delta_{\rm H}$ 4.41) к C-13, от H₃-15 ($\delta_{\rm H}$ 1.23) к C-4 и C-13 указывают на наличие дриманового ядра в молекуле соединения **11**. Сравнение данных ЯМР соединения **11** с литературными показало его близкое сходство с сесквитерпеноидной частью известного грибного метаболита 7 α ,14-дигидрокси-6 β -*n*-нитробензоилконфертифолина.

Рисунок 11 – Структура (а) и ключевые ROESY взаимодействия (б) в соединении 11

ROESY взаимодействия и КССВ ${}^{3}J_{H6-H7} = 2.1$ Гц указывали на относительные стереоконфигурации в соединении **11**, как показано на рисунке 116. На основании этих данных был сделан вывод об обратной конфигурации стереоцентра при С-7 в соединении **11**

в сравнении с 7α,14-дигидрокси-6β-*n*-нитробензоилконфертифолином. Соединение было названо 6β,7β,14-тригидроксиконфертифолином.

Брутто-формула соединения **12** была установлена как С₉H₁₄O₄ на основании данных HRESIMS и подтверждена данными ¹³С ЯМР-спектров. Данные ЯМР для соединения **12** были близки к таковым для аспилактонола F. Таким образом, «плоская» структура соединения **12** была предположена такой же как для аспилактонола F.

Рисунок 12 – Значения $\Delta\delta$ (δ_{S} – δ_{R}) (в м.д.) для МТРА-эфиров соединения 12

Этерификация гидроксильных групп С-6 и С-9 (*R*)- и (*S*)-МТРА хлоридами привела к получению (*S*)- и (*R*)-ди-МТРА-эфиров соответственно. Наблюдаемые разницы химических сдвигов $\Delta\delta(\delta_S - \delta_R)$ (рисунок 12) указывают на 6*R*, 9*S* конфигурации. Абсолютная конфигурация стереоцентра при С-5 была доказана как *S* на основании сильного негативного характеристического эффекта Коттона при λ_{216} –11.51 в КД спектре соединения **12** (рисунок 13). Соединение **12** было названо аспилактонол G. Аспилактонол G является новым представителем класса аспирон-подобных пентакетидов, довольно распространённых в грибах родственных *Aspergillus flocculosus*.

Рисунок 13 – Спектр КД аспилактонола G (12) в метаноле

Также были выделены известное родственное аспилактонолу G соединения аспилактонол F и дигидроаспирон, известные *n*-нитробензоильные дримановые производные инсуликолид A и 7α,14-дигидрокси-6β-*n*-нитробензоилконфертифолин, а также известный дикетопиперазиновый алкалоид мактанамид.

Установление строения индивидуальных соединений из Aspergillus niveoglaucus

Штамм гриба Aspergillus niveoglaucus 01NT.1.10.4 был выделен из образца донных осадков, отобранного в бухте Нячанг (Вьетнам, Южно-Китайское море).

Из гриба A. niveoglaucus в результате культивирования на рисовой среде были получены новые поликетидные производные нивеоглауцины A (13) и B (14), известные пренилированные алкалоиды криптоэхинулины B и D, известные родственные ауроглауцину 5-гидрокси-6-(3-метилбут-2-енил)-2-(пент-1-енил)бензофуран-4-карбальдегид,

флавоглауцин, аспергин и изодигидроауроглауцин, а также известные алкалоиды эхинулинового ряда: эхинулин, неоэхинулины В, С, Е и неоэхинулин.

Молекулярная формула соединения **13** была установлена как $C_{12}H_{12}O_4$ на основании данных HRESIMS и подтверждена данными ¹³С ЯМР. Анализ спектров ¹Н и ¹³С ЯМР показал наличие метоксильной (δ_C 56.1; δ_H 4.80) и семи метиновых (δ_C 146.7, 139.4, 129.8, 129.3, 122.6, 118.5, 116.8; δ_H 7.46, 7.36, 7.15, 7.11, 6.91, 6.78, 5.99) групп, трех четвертичных *sp*²-

гибридизованных атомов углерода ($\delta_{\rm C}$ 157.5, 138.4, 126.3) и одной карбоксильной группы ($\delta_{\rm C}$ 170.7).

Значения КССВ между H-3 ($\delta_{\rm H}$ 6.78, дд, *J*=7.9, 0.9 Hz), H-4 ($\delta_{\rm H}$ 7.11; т; *J*=7.9 Hz) и H-5 ($\delta_{\rm H}$ 7.15; дд; *J*=7.9, 0.9 Hz) вместе с HMBC-корреляциями (рисунок 146) от H-3 к C-1 ($\delta_{\rm C}$ 126.3), C-5 ($\delta_{\rm C}$ 118.5) и C-1' ($\delta_{\rm C}$ 139.4), от H-4 к C-2 ($\delta_{\rm C}$ 138.4) и C-6 ($\delta_{\rm C}$ 157.5) и от H-5 к C-1 и C-3 ($\delta_{\rm C}$ 116.8) указывают на наличие в структуре тризамещенного (при C-1, C-2 и C-6) бензольного кольца. Структура 2,4-пентадиеновой кислоты в качестве боковой цепи и ее положение при C-2 были однозначно установлены на основании HMBC-корреляций от H-3 к C-1' ($\delta_{\rm C}$ 139.4), от H-1' ($\delta_{\rm H}$ 7.36) к C-1, C-3 и C-3' ($\delta_{\rm C}$ 146.7), от H-2' ($\delta_{\rm H}$ 6.91) к C-2, и C-4' ($\delta_{\rm C}$ 122.6), от H-3' ($\delta_{\rm H}$ 7.46) к C-1' и C-5' ($\delta_{\rm C}$ 170.7), и от H-4' ($\delta_{\rm H}$ 5.99) к C-2. HMBC взаимодействия от 1-OMe ($\delta_{\rm C}$ 56.1, $\delta_{\rm H}$ 4.80) к C-1, C-2 и C-6, а также ROESY корреляции между 1-OMe и H-1' позволяют установить положение метоксигруппы при C-1. Положение гидроксильной группы при C-6 было определено согласно характерному значению химического сдвига у атома C-6 в сочетании с данными HRESIMS. Таким образом, структура соединения **13** была установлена (рисунок 14а), и оно было названо нивеоглауцином А.

Рисунок 14 – Структура (а) и ключевые НМВС взаимодействия (б) нивеоглауцина А (13)

НRESIMS соединения 14 содержит пик депротонированной молекулы [М–Н][−] при m/z 279.0872. Это позволило определить брутто-формулу соединения 14 как C₁₄H₁₆O₆, что соответствует семи эквивалентам двойных связей. Анализ спектров¹Н и ¹³С ЯМР, DEPT и HSQC экспериментов показал наличие одной метильной ($\delta_{\rm C}$ 14.0; $\delta_{\rm H}$ 1.13), трех sp^3 -гибридизованных метиленовых атомов углерода ($\delta_{\rm C}$ 71.7, 65.2, 42.5), двух sp^3 -гибридизованных ($\delta_{\rm C}$ 82.3, 43.5) и трех sp^2 -гибридизованных метиновых ($\delta_{\rm C}$ 130.3, 115.2, 113.2), а также трех четвертичных sp^2 -гибридизованных атомов углерода ($\delta_{\rm C}$ 152.9, 144.1, 126.1) и двух карбоксильных групп ($\delta_{\rm C}$ 178.8, 174.5).

Рисунок 15 – Структура (а) и ключевые НМВС взаимодействия (б) нивеоглауцина В (14)

Сравнение ЯМР спектров соединения **14** и нивеоглауцина A (**13**) показало сходства и позволило предположить наличие подобного тризамещенного бензольного кольца в структуре соединения **14**. Эти предположения подтверждаются HMBC-корреляциями (рисунок 156) от H-3 ($\delta_{\rm H}$ 6.72) к C-1 ($\delta_{\rm C}$ 126.1) и C-5 ($\delta_{\rm C}$ 115.2), от H-4 ($\delta_{\rm H}$ 7.10) к C-2 ($\delta_{\rm C}$ 144.1) и C-6 ($\delta_{\rm C}$ 152.9) и от H-5 ($\delta_{\rm H}$ 6.67) к C-1 и C-3 ($\delta_{\rm C}$ 113.2). В свою очередь, HMBC-корреляции от H-3 к C-1' ($\delta_{\rm C}$ 82.3), от H-5 к C-7 ($\delta_{\rm C}$ 71.7), от H₂-7 ($\delta_{\rm H}$ 5.06, 4.96) к C-1, C-2, C-6 и C-1', от H₂-2' ($\delta_{\rm H}$ 2.77, 2.59) к C-2, C-1' и C-3' ($\delta_{\rm C}$ 174.5) доказывают наличие фуранового цикла в положениях C-1/C-2 бензольного кольца с боковой цепью при C-1'. Еще одна боковая цепь была определена как остаток 3-ГИМК на основании данных ESIMS (пик при *m/z* 193.0506, соответствующий [M–C₄H₆O₂]⁻) и данным HMBC от H₂-1" ($\delta_{\rm H}$ 3.71, 3.58) к C-2" ($\delta_{\rm C}$ 43.5), C-3" ($\delta_{\rm C}$ 178.8) и C-4" ($\delta_{\rm C}$ 14.0), от H-2" ($\delta_{\rm H}$ 2.56) к C-1" ($\delta_{\rm C}$ 65.2), C-3" и C-4", а также от H₃-4" ($\delta_{\rm H}$ 1.13) к C-1", C-2" и C-3". Положение этого заместителя при C-6 определено в соответствии с характерным значением химсдвига атома C-6 ($\delta_{\rm C}$ 152.9) и слабых дальних COSY взаимодействий между H₂-1" и H-5. К сожалению, конфигурации хиральных центров

соединения 14 установлены не были ввиду малых количеств и лабильности вещества. Соединение 14 было названо нивеоглауцином В.

Предполагаемый путь биосинтеза нивеоглауцинов А (13) и В (14)

Нами была предложена возможная схема биосинтеза нивеоглауцинов А (13) и В (14) (рисунок 16). По-видимому, они, как и ближайшие родственные им соединения (флавоглауцин, аспергин и изодигидроауроглауцин), образуются из ауроглауцина, который после частичного восстановления бензольного кольца превращается в прекурсор i-1 для обоих соединений. Окисление альдегидной группы и частичная окислительная деградация боковой цепи i-1 приводит к образованию дигидроксикарбоновой кислоты i-2, которая после метилирования превращается в нивеоглауцин А (13). Нивеоглауцин В (14), вероятно, образуется через восстановление альдегидной группы предшественника i-1 и последующей частичной окислительной деградации боковой цепи интермедиата i-3, приводящей к получению интермедиата i-4. Внутримолекулярная циклизация гидроксиметильной группы с двойной цепью боковой цепи в молекуле промежуточного продукта i-4 приводит к образованию изобензофурана i-5. Далее происходит этерификация интермедиата i-5 3-ГИМК с получением нивеоглауцин В (14).

Рисунок 16 – Возможный путь биосинтеза нивеоглауцинов А и В

Установление строения индивидуальных соединений из Aspergillus terreus

Изолят гриба Aspergillus terreus LM.1.5 был выделен с поверхности листьев мангрового дерева Kandelia candel (провинция Кхань Хоа, Вьетнам, Южно-Китайское море).

Сухой остаток, полученный после упаривания этилацетатного экстракта культуры, делили на колонках с силикагелем, сефадексом LH-20 и методами прямо- и обращеннофазовой ВЭЖХ. В результате были получены новые трипептиды астеррипептиды А-С (**15-17**) и бисиндолбензохиноновый алкалоид астеррихинон F (**18**), и 10 известных метаболитов: бисиндолбензохиноновые алкалоды астеррихиноны АЗ, В4, С1, С2 и D, поликетидные производные 1,2,5-тригидрокси-7-метил-9,10-антрахинон, 4-гидрокси-3-(3-метилбут-2енил)бензальдегид и квестин, сесквитерпеноид квадрон и производное эргостерина 6βгидроксиэргоста-4,7,22-триен-3-он.

Брутто-формула соединения **15** была определена как C₂₉H₃₃N₃O₄ на основании HRESIMS (пик депротонированной молекулы $[M-H]^-$ при m/z 486.2399) и подтверждена данными спектра ¹³С ЯМР. Анализ спектров ¹Н и ¹³С ЯМР данного соединения показал наличие двух метильных ($\delta_{\rm H}$ 0.85, 0.89; $\delta_{\rm C}$ 12.1, 15.7), пяти метиленовых ($\delta_{\rm H}$ 1.24, 1.40, 2.09, 2.14, 2.17, 2.50,

3.28, 3.33, 3.79, 3.93; $\delta_{\rm C}$ 24.1, 24.4, 29.7, 38.5, 47.6), пяти алифатических метиновых ($\delta_{\rm H}$ 1.97, 2.54, 5.10, 5.22; $\delta_{\rm C}$ 38.2, 58.2, 59.4, 61.7) и 12 ароматических метиновых ($\delta_{\rm H}$ 6.73, 7.10 (2H), 7.29 (2H), 7.30, 7.35, 7.36 (2H), 7.51 (2H), 7.66; $\delta_{\rm C}$ 117.9, 127.8, 127.9 (2C), 128.7 (2C), 128.8 (2C), 129.7, 130.5 (2C), 142.8) групп, двух *sp*²-гибридизованных четвертичных атомов углерода ($\delta_{\rm C}$ 135.0, 135.1), четырех амидных карбонильных групп ($\delta_{\rm C}$ 164.6, 168.2, 170.1, 174.7) и одной NH-группы ($\delta_{\rm H}$ 5.57).

Рисунок 17 – Ключевые НМВС корреляции (**a**), ¹H-¹H COSY (жирные линии) и ¹H-¹H ROESY (двойные стрелки) взаимодействия (**б**) соединения **15**

Детальный анализ HMBC, ¹H-¹H COSY и ROESY спектров (рисунок 17) позволил идентифицировать три аминокислотных остатка, включая изолейцин (IIe), пролин (Pro) и фенилаланин (Phe). HMBC-корреляции (рисунок 17а) от H-1 ($\delta_{\rm H}$ 5.57) к C-2 ($\delta_{\rm C}$ 59.4), C-7 ($\delta_{\rm C}$ 170.1), C-24 ($\delta_{\rm C}$ 58.2) и C-32 ($\delta_{\rm C}$ 168.2), от H-2 ($\delta_{\rm H}$ 2.54) к C-7 и C-32, от H-24 ($\delta_{\rm H}$ 5.57) к C-7 и C-32 указывали на присутствие дикетопиперазинового кольца, сформированного из остатков изолейцина и фенилаланина. HMBC-взаимодействия (рисунок 17а) от H-16 ($\delta_{\rm H}$ 6.73) к C-15 ($\delta_{\rm C}$ 164.6), C-17 ($\delta_{\rm C}$ 142.8) и C-18 ($\delta_{\rm C}$ 135.1), от H-17 ($\delta_{\rm H}$ 6.73) к C-16 ($\delta_{\rm C}$ 117.9), C-18 и C-19 ($\delta_{\rm C}$ 127.9), от H-19 ($\delta_{\rm H}$ 7.51) к C-17, C-21 ($\delta_{\rm C}$ 129.7) и C-23($\delta_{\rm C}$ 127.9), от H-20 ($\delta_{\rm H}$ 7.36) к C-22 ($\delta_{\rm C}$ 128.8) и C-18, от H-21 ($\delta_{\rm H}$ 7.35) к C-19 и C-23, от H-23 ($\delta_{\rm H}$ 7.51) к C-21, с-19 и C-17, а также данные HRESIMS (пики при *m/z* 486.2399 ([M–H]⁻) и 345.1611 ([M–H–C₉H₇O]⁻)) позволили определить структуру остатка коричной кислоты. Положение этого фрагмента при аминогруппе пролина было установлено на основании данных спектра ROESY (рисунок 176), содержащего взаимодействия между H-13a ($\delta_{\rm H}$ 3.93) и H-16 ($\delta_{\rm H}$ 6.73), H-13b ($\delta_{\rm H}$ 3.79) и H-16, а также между H-13a/b и H-17 ($\delta_{\rm H}$ 7.66). Таким образом, «плоская» структура соединения **15** была установлена.

Абсолютные конфигурации соединения 15 были установлены методом Мерфи. В результате анализа *L*-FDAA-производные аминокислотных остатков, полученных в результате гидролиза соединения 15, были производным стандартных образцов *L*-Ile, *L*-Pro и *D*-Phe. Таким образом, конфигурации асимметрических центров при C-2, C-10 и C-24 были установлены как 2S, 10S, 24R. Соединение 15 было названо астеррипептидом A.

Брутто-формула соединения **16** была установлена как C₂₉H₃₃N₃O₄ на основании HRESIMS (пик депротонированной молекулы m/z 486.2399 [M–H][–]) и была подтверждена данными спектра ¹³С ЯМР. Анализ спектров ¹H и ¹³С ЯМР соединения **16** показал наличие двух метильных ($\delta_{\rm H}$ 0.70, 0.88; $\delta_{\rm C}$ 20.7, 23.1), пяти метиленовых ($\delta_{\rm H}$ 1.52, 1.67, 2.09, 2.12, 2.17, 2.48, 3.28, 3.33, 3.79, 3.90; $\delta_{\rm C}$ 29.6, 29.7, 38.5, 40.7, 47.6), четырех алифатических метиновых ($\delta_{\rm H}$ 6.73, 7.10 (2H), 7.29 (2H), 7.30, 7.35, 7.36 (2H), 7.51 (2H), 7.66; $\delta_{\rm C}$ 117.9, 127.8, 127.9 (2C), 128.7 (2C), 128.8 (2C), 129.7, 130.5 (2C), 142.8) групп, двух *sp*²-гибридизованных четвертичных атома углерода ($\delta_{\rm C}$ 135.1, 135.2), четырех амидных карбонильных групп ($\delta_{\rm C}$ 164.6, 168.2, 170.8, 175.0), и одной NH-группы ($\delta_{\rm H}$ 5.62).

Детальное сравнение данных ¹Н и ¹³С ЯМР-спектров соединений **15** и **16** показало их близкое сходство, за исключением сигналов в дикетопиперазиновом кольце, а именно C-3 ($\delta_{\rm C}$ 40.7), C-4 ($\delta_{\rm C}$ 24.4), C-5 ($\delta_{\rm C}$ 23.1) и C-6 ($\delta_{\rm C}$ 20.7), а также характера расщепления сигналов протонов при этих атомах. Эти данные совместно с НМВС-взаимодействиями от H-4 ($\delta_{\rm H}$ 2.07) к C-2, C-3, от H-5 ($\delta_{\rm H}$ 0.88) к C-2 и C-3, а также от H-6 ($\delta_{\rm H}$ 0.70) к C-3 свидетельствуют о наличии остатка лейцина в дикетопиперазиновом кольце соединения **16** вместо изолейцина в

соединении 15. Таким образом, соединение 16 является изомером соединения 15. Соединение 16 было названо астеррипептидом В. Абсолютные конфигурации астеррипептида В не были установлены по причине недостаточного количества соединения (0.63 мг).

Брутто-формула соединения **17** была установлена как C₂₈H₃₁N₃O₄ на основании HRESIMS (пик депротонированной молекулы m/z 472.2238 [M–H][–]) и была подтверждена данными спектра ¹³С ЯМР. Детальный анализ спектров ¹H и ¹³С ЯМР соединения **17** показал наличие двух метильных ($\delta_{\rm H}$ 0.90, 0.93; $\delta_{\rm C}$ 15.8, 18.9), четырех метиленовых ($\delta_{\rm H}$ 1.24, 1.40, 2.08, 2.14, 2.18, 2.49, 3.28, 3.34, 3.79, 3.94; $\delta_{\rm C}$ 24.4, 29.7, 38.6, 47.6), четырех алифатических ($\delta_{\rm H}$ 2.31, 2.60, 5.11, 5.22; $\delta_{\rm C}$ 31.7, 58.0, 59.8, 61.6) и двенадцати ароматических метиновых ($\delta_{\rm H}$ 6.72, 7.10 (2H), 7.29 (3H), 7.34, 7.35 (2H), 7.51 (2H), 7.66; $\delta_{\rm C}$ 117.8, 127.8, 127.9 (2C), 128.7 (2C), 128.8 (2C), 129.7, 130.6 (2C), 142.9) групп, двух *sp*²-гибридизованных четвертичных атома углерода ($\delta_{\rm C}$ 134.9, 135.1), четырех амидных карбонильных групп ($\delta_{\rm C}$ 164.6, 168.2, 170.2, 174.6) и одной NH-группы ($\delta_{\rm H}$ 5.67).

Детальный анализ HMBC, ¹H-¹H COSY и ROESY спектров показал, что соединение **17** является близким по структуре к астеррипептидам A (**15**) и B (**16**), но содержит остаток валина в дикетопиперазиновом фрагменте вместо изолейцина/лейцина в случае соединений **15** и **16**. Аналогично астеррипептиду B соединение **17** было получено в очень малых количествах (0.51 мг), что не позволило установить абсолютные конфигурации хиральных центров соединения. Соединение **17** было названо астеррипептидом C.

Стоит отметить, что это первый случай выделения метаболитов морских грибов, содержащих в своей структуре остаток коричной кислоты.

Пик катионированной молекулы $[M+Na]^+$ при m/z 439.1257 в HRESIMS соединения **18** соответствует молекулярной формуле C₂₄H₂₀N₂O₅ (рассчитано для C₂₄H₂₀N₂O₅Na, 439.1264), что подтверждается данными спектра ¹³С ЯМР. Тщательный анализ спектров ¹H и ¹³С ЯМР вместе с экспериментами DEPT и HSQC показал наличие десяти метиновых групп (δ_C 130.1, 125.0, 124.8, 122.7, 120.4, 120.3, 120.1, 111.4, 109.9, 104.6; δ_H 7.78, 7.47, 7.43, 7.29, 7.24, 7.18, 7.14, 6.88, 6.70, 6.24), одного четвертичного sp^3 -гибридизованного (δ_C 90.3) и 11 четвертичных sp^2 -гибридизованных атомов углерода (δ_C 148.6, 144.9, 141.3, 139.1, 138.3, 136.2, 129.7, 126.5, 121.6, 116.7, 106.7), двух метоксильных групп (δ_C 61.5, 60.4; δ_H 4.12, 3.58), а также двух протонов, связанных с гетероатомами (δ_H 8.44, 5.06).

НМВС корреляции (рисунок 18a) от 1"-NH ($\delta_{\rm H}$ 8.44) к C-3" ($\delta_{\rm C}$ 106.7), C-3a" ($\delta_{\rm C}$ 126.5), от H-2" (δ_H 7.29) к C-3" (δ_C 106.7), C-3a" и C-7a" (δ_C 136.2), от H-4" (δ_H 7.47) к C-3", C-6" (δ_C 122.7) и С-7а", от Н-5" ($\delta_{\rm H}$ 7.14) к С-3а" и С-7" ($\delta_{\rm C}$ 111.4), от Н-6" ($\delta_{\rm H}$ 7.24) к С-4" ($\delta_{\rm C}$ 120.3) и С-7а", от H-7" ($\delta_{\rm H}$ 7.43) к C-3a" и C-5" ($\delta_{\rm C}$ 120.4), а также ¹H-¹H COSY корреляции (рисунок 186) 1"-NH/H-2", H-4"/H-5", H-5"/H-6" И H-6"/H-7" позволяют установить структуру монозамещенного индольного фрагмента. НМВС корреляции (рисунок 186) от H-2' ($\delta_{\rm H}$ 6.24) к C-3' ($\delta_{\rm C}$ 90.3), C-3a' ($\delta_{\rm C}$ 129.7) и C-7a' ($\delta_{\rm C}$ 148.6), от H-4' ($\delta_{\rm H}$ 7.78) к C-3', C-7a' и C-6' ($\delta_{\rm C}$ 130.1), от H-5' ($\delta_{\rm H}$ 6.88) к C-3a', C-7' ($\delta_{\rm C}$ 109.9), от H-6' ($\delta_{\rm H}$ 7.18) к C-4' ($\delta_{\rm C}$ 125.0) и C-7a'', от H-7' ($\delta_{\rm H}$ 6.70) к С-3а' и С-5' ($\delta_{\rm C}$ 120.1), ¹H-¹H COSY корреляции (рисунок 18б) H-4'/H-5', H-5'/H-6', и Н-6'/H-7', а также величины химических сдвигов атомов C-2' ($\delta_{\rm C}$ 104.6) и C-3' показывают наличие дизамещенного индолинового фрагмента. Гексазамещенное бензольное кольцо с гидроксильной группой при С-1 и метоксильными группами при С-3 и С-6 было установлено на основании HMBC корреляций (рисунок 18в) от 6-OMe ($\delta_{\rm H}$ 4.12) к C-6 ($\delta_{\rm C}$ 139.1), от 3-OMe ($\delta_{\rm H}$ 3.58) к С-3 ($\delta_{\rm C}$ 138.4), от 1-ОН ($\delta_{\rm C}$ 5.06) к С-1, С-2 ($\delta_{\rm C}$ 116.7) и С-6, были отнесены к 3,6диметокси-1-гидроксибензольному кольцу. Соединение индолинового и бензольного фрагментов было однозначно доказано НМВС взаимодействиями от H-2' к C-2 и C-3, и значениями химических сдвигов атомов C-2, C-3, C-2' и C-3'. Таким образом, установлена структура тетрациклической системы, состоящей из индолин-бензофуранового фрагмента. Соединение индольного и бензольного фрагментов было однозначно доказано НМВС взаимодействиями (рисунок 18г) от H-2" к C-2 и C-3, и значениями химических сдвигов атомов C-2, C-2" и C-3, и значениями химических сдвигов атомов C-2, C-2" и C-3".

Рисунок 18 – Ключевые НМВС (показаны стрелками) и ¹Н-¹Н COSY (показаны жирными линиями) корреляции в различных фрагментах молекулы **18** (**a**, **б** – индольный и индолиновый фрагменты, **в** – гидрохиноновый фрагмент, **г** – вся молекула целиком)

Прямое сравнение данных спектров ЯМР соединения **18** с литературными данными для известного соединения вариолоида D выявило близкое сходство, за исключением сигналов C-1, C-2, C-4, C-6 C-3" в соединении **18**. Эти данные доказывают наличие тетрациклической системы, образованной восстановлением C-2' и C-3' в индольной части с последующей циклизацией по C-4 и C-2'. Таким образом, соединение **18** имеет «плоскую» структуру 3-(1H-индол-3-ил)-1,4-диметокси-5а,6-дигидро-10bH-бензофуро[2,3-b]индол-2,10b-диола.

Абсолютные конфигурации стереоцентров С-2' и С-3' в соединении **18** были определены на основе сравнения экспериментальных данных КД соединения **18** с таковыми для близкородственного известного вариолоида С. Соединение **18** было названо астеррихиноном F. Следует отметить, что соединение с такой плоской структурой уже было описано Араи и Ямамото как неназванное производное астеррихинона D. Тем не менее, эти авторы не представили надежных доказательств установления структуры. Сходство значений $[\alpha]_D^{20}$ астеррихинона F (**18**) и безымянного соединения из статьи Араи и Ямамото (+47 и +39 соответственно) может указывать на идентичность этих соединений.

Помимо новых соединений, из гриба Aspergillus terreus были выделены известные бисиндолбензохиноновые алкалоды астеррихиноны АЗ, В4, С1, С2 и D, поликетидные производные 1,2,5-тригидрокси-7-метил-9,10-антрахинон, 4-гидрокси-3-(3-метилбут-2-енил)бензальдегид и квестин, сесквитерпеноид квадрон и производное эргостерина 6β-гидроксиэргоста-4,7,22-триен-3-он. Это первый случай описания 1,2,5-тригидрокси-7-метил-9,10-антрахинона как природного соединения, а 4-гидрокси-3-(3-метилбут-2-енил)бензальдегида – как метаболита морского микроскопического гриба.

Биологическая активность выделенных соединений

Биологическая активность метаболитов *Penicillium* sp. КММ 4672

Показано, что N-метилпретриходермамид В обладает высокой токсичностью в отношении клеток рака предстательной железы 22Rv1, PC-3 и LNCaP линий с ИК₅₀ 0.51, 5.11 и 1.76 мкМ соответственно. Также было показано, что это соединение в концентрации 1 мкМ вызывает апоптоз в 31.3 % клеток рака предстательной железы человека 22Rv1 в течение 48 ч.

Впервые была показана токсичность ансеринона и (+)-формилансеринона В в отношении клеток асцитной карциномы Эрлиха с ЭД₅₀ 46.1 и 35.7 мкМ соответственно. Была показана слабая антиоксидантная активность 3,5-диметил-8-метокси-3,4-дигидро-1Н-

изохромен-6-ола, который в концентрации 100 мкМ связывал 35% свободных радикалов ДФПГ.

Биологическая активность метаболитов Aspergillus niveoglaucus

Была показана умеренная токсичность неоэхинулинов В (ИК₅₀ 50.9 мкМ) и С (ИК₅₀ 40.6 мкМ) в отношении клеток мышиной нейробластомы Neuro-2a.

Была показана умеренная токсичность в отношении клеток рака предстательной железы человека, резистентных к лекарственным средствам (22Rv1, PC-3) и чувствительных к лекарственным средствам (LNCaP) эхинулина (ИК₅₀ 63.2, 41.7 и 25.9 мкМ соответственно) и неоэхинулина (ИК₅₀ 49.9, 63.8 и 38.9 мкМ соответственно). Впервые было показано, что неоэхинулин связывает свободные радикалы ДФПГ с ИК₅₀ 62.6 мкМ.

Впервые показана нейропротекторная активность для (+)- и (–)-криптоэхинулинов В в отношении клеток мышиной нейробластомы Neuro-2a, подвергнутых действию токсинов паракватом, 6-ГД и ротеноном. Оба соединения повышали жизнеспособность клеток, инкубированных с паракватом, на 21.6% и 54.4% соответственно. При этом показано, что в случае использования 6-ГД только (+)-криптоэхинулин В повышал жизнеспособность клеток на 40.7%, тогда как в случае использования ротенона только (–)-криптоэхинулин В повышал жизнеспособность клеток на 40.7%.

Биологическая активность метаболитов Aspergillus flocculosus

Показано, что соединение **10** его *n*-нитробензоильное производное 9α ,14-дигидрокси-6β-*n*-нитробензоилциннамолид проявляли цитотоксическую активность в отношении клеток мышиной нейробластомы Neuro-2a с ИК₅₀ 24.1 мкМ и 4.9 мкМ соответственно. Было показано, что эти два соединения также были токсичны в отношении лекарственноустойчивых клеток рака простаты 22Rv1 с ИК₅₀ 31.5 и 3.0 мкМ, соответственно. Была показана слабая цитотоксическая активность *n*-нитробензоильного производного соединения **10** в отношении клеток рака молочной железы МСF-7 (ИК₅₀ 59.6 мкМ).

Было показано, что соединения 9 и 11 при 100 мкМ способны ингибировать образование колоний клеток рака простаты линии 22Rv1 на 41% и 36% соответственно.

Биологическая активность метаболитов Aspergillus terreus

Показана умеренная и слабая токсичность астеррихинонов В4, С1 и С2 в отношении лекарственно-устойчивых клеток рака простаты 22Rv1 (ИК₅₀ 21.5, 14.7 и 28.6 мкМ соответственно) и нормальных клеток рака простаты PNT-2 (ИК₅₀ 63.4, 37.4 и 37.4 мкМ соответственно). Также для астеррихинонов В4 и С1 показана умеренная и слабая токсичность в отношении клеток мышиной нейробластомы Neuro-2a (ИК₅₀ 91.5 и 42.3 мкМ соответственно).

Соединение **18** проявило антиоксидантные свойства, ингибируя свободные радикалы ДФПГ с ЭД₅₀ 3.0 мкМ. Показано, что астеррихинон В4 повышает жизнеспособность клеток Neuro-2a при действии 6-ГД на 36.3%, параквата (на 18.4%) и ротенона (на 34.8%).

Выводы

1. Из грибов-микромицетов, выделенных из различных субстратов, собранных у Вьетнамского побережья Южно-Китайского моря, отобраны четыре перспективных штаммапродуцента вторичных метаболитов: *Penicillium* sp. KMM 4672, *Aspergillus flocculosus*, *A. niveoglaucus* и *A. terreus*.

2. Выделено 61 индивидуальное соединение различной химической природы. Установлено строение 18 новых низкомолекулярных вторичных метаболитов. Проведена структурная идентификация 43 метаболитов с известными веществами.

3. Установлено строение четырех новых дикетопиперазиновых алкалоидов цитриперазинов А-С и трех новых эпидитиодикетопиперазиновых алкалоидов претриходермамидов D-F из гриба *Penicillium* sp. KMM 4672. Показано наличие редкого спиробензофуранового фрагмента в структуре цитриперазинов С и D.

4. Установлено строение нового меросесквитерпеноида 12-э*пи*-аспертетранона D, двух новых сесквитерпеноидов 9α,6β,14-тригидроксициннамолида и 6β,7β,14-тригидроксиконфертифолина, а также нового тетракетида аспилактонола G из Aspergillus flocculosus.

5. Установлено строение двух новых ауроглауцин-подобных соединений нивеоглауцинов А и В из *A. niveoglaucus*. Впервые проведено успешное хроматографическое разделение (+)- и (–)-криптоэхинулинов В.

6. Установлено строение трех новых циклотрипептидных производных астеррипептидов А-С и нового бисиндолбензофуранового алкалоида астеррихинона F из *A. terreus*. Показано, что астеррипептиды содержат в своей структуре остаток коричной кислоты.

7. Установлено, что N-метилпретриходермамид В обладает высокой токсичностью в отношении клеток рака предстательной железы 22Rv1, PC-3 и LNCaP и вызывает апоптоз клеток 22Rv1 в наномолярных концентрациях.

8. Впервые показана нейропротекторная активность для (+)- и (-)криптоэхинулинов В и астеррихинона В4 при действии токсинов параквата, 6гидроксидофамина и ротенона.

Основные публикации по теме диссертации

1. О.Ф. Сметанина, А.Н. Юрченко, **Е.В. Иванец**, Н.Н. Киричук, Ю.В. Худякова, Е.А. Юрченко, Ш.Ш. Афиятуллов. Метаболиты морского гриба *Penicillium citrinum*, ассоциированного с бурой водорослью *Padina* sp. // Химия природ. соединений. 2016, № 1, С. 100-101.

2. Yurchenko, A.N.; Smetanina, O.F.; **Ivanets, E.V.**; Kalinovsky, A.I.; Khudyakova, Y.V.; Kirichuk, N.N.; Popov, R.S.; Bokemeyer, C.; von Amsberg, G.; Chingizova, E.A.; Afiyatullov, S.S.; Dyshlovoy, S.A. Pretrichodermamides D–F from a Marine Algicolous Fungus *Penicillium* sp. KMM 4672. // Mar. Drugs. 2016. Vol. 14, № 7. P. 122.

3. О. Ф. Сметанина, А.Н. Юрченко, **Е.В. Иванец**, А.В. Герасименко, Р.Т.Н. Trinch, В.М.Ly, Т.Т.Т. Van, Е.А. Юрченко, Ш. Ш. Афиятуллов. Ароматические метаболиты морского гриба *Penicillium* sp., ассоциированного с бурой водорослью *Padina* sp. // Химия природ. соединений. 2017, № 3, С. 507-508.

4. Yurchenko E.A., Menchinskaya E.S., Pislyagin E.A., Trinh P.T.H., **Ivanets E.V.**, Smetanina O.F., Yurchenko A.N. Neuroprotective Activity of Some Marine Fungal Metabolites in the 6-Hydroxydopamin- and Paraquat-Induced Parkinson's Disease Models // Mar. Drugs. 2018. Vol. 16, N 11. P. 457.

5. **Ivanets E.V.**, Yurchenko A.N., Trinh P.T.H., Afiyatullov Sh.Sh. Polyketides and echinulinderivatives from Vietnamese strain of marine fungus *Eurotium niveoglaucum* // Вестник ДВО РАН. 2018. № 6S. Р. 86-87.

6. Menchinskaya E.S., Dyshlovoy S.A., **Ivanets E.V.**, Yurchenko E.A. Cytotoxity of some marine fungi metabolites against cancer cells // Вестник ДВО РАН. 2018. № 6S. Р. 116

7. Yurchenko A.N., Smetanina O.F., **Ivanets E.V.**, Phan T.T.H., Ngo N.T.D., Zhuravleva O.I., Rasin A.B., Dyshlovoy S.A., Menchinskaya E.S., Pislyagin E.A., von Amsberg G., Afiyatullov S.S., Yurchenko E.A. Auroglaucin-related neuroprotective compounds from Vietnamese marine sediment-derived fungus *Aspergillus niveoglaucus* // Nat. Prod. Res. 2020. Vol. 34, № 18. P. 2589-2594.

8. Yurchenko A.N., Berdyshev D.V., Smetanina O.F., **Ivanets E.V.**, Zhuravleva O.I., Rasin A.B., Khudyakova Y.V., Popov R.S., Dyshlovoy S.A., von Amsberg G., Afiyatullov S.S. Citriperazines A-D produced by a marine algae-derived fungus *Penicillium* sp. KMM 4672 // Nat. Prod. Res. 2020. Vol. 34, No 8. P. 1118-1123.

9. Yurchenko A.N., Trinh P.T.H., **Girich E.V.**, Smetanina O.F., Rasin A.B., Popov R.S., Dyshlovoy S.A., von Amsberg G., Menchinskaya E.S., Van T.T.T., Afiyatullov S.S. Biologically Active Metabolites from the Marine Sediment-Derived Fungus *Aspergillus flocculosus* // Mar. Drugs. 2019. Vol. 17, No 10. P. 579.

10. Smetanina O.F., Yurchenko A.N., **Girich (Ivanets) E.V.**, Trinh P.T., Antonov A.S., Dyshlovoy S.A., Von Amsberg G., Kim N.Y., Chingizova E.A., Pislyagin E.A., Menchinskaya E.S., Yurchenko E.A., Van T.T., Afiyatullov S.S. Biologically active echinulin-related indolediketopiperazines from the marine sediment-derived fungus *Aspergillus niveoglaucus* // Molecules. 2020. Vol. 25, N_{2} 1. P. 61.

11. Girich, E.V.; Yurchenko, A.N.; Smetanina, O.F.; Trinh, P.T.; Ngoc, N.T.; Pivkin, M.V.; Popov, R.S.; Pislyagin, E.A.; Menchinskaya, E.S.; Chingizova, E.A., *et al.* Neuroprotective Metabolites from Vietnamese Marine Derived Fungi of *Aspergillus* and *Penicillium* Genera. *Mar. Drugs* 2020, Vol. 18, No 12. P. 608.

12. Yurchenko, A.N.; Girich, E.V.; Yurchenko, E.A. Metabolites of Marine Sediment-Derived Fungi: Actual Trends of Biological Activity Studies. Mar. Drugs 2021, Vol. 19, № 2. P. 88.

Тезисы докладов:

1. **Иванец Е.В.**, Юрченко А.Н. Метаболиты факультативного морского гриба *Penicillium citrinum* // III Всероссийская студенческая конференция с международным участием «Химия и химическое образование XXI века». Санкт- Петербург, 14-17 апреля 2015г.: сборник материалов. СПб. : Астерион, 2015. С. 33

2. Yurchenko A.N., Trinh P.T.H., Ngoc N.T.D., **Ivanets E.V.,** Smetanina O.F., Nhut N.D., Afiyatullov Sh.Sh. Low-molecular secondary metabolites of sediment-derived fungi from Vietnamese coastal waters // Marine Fungal Metabolites and Their Bioactivities [Electronic Resource] : 1st Russian-Vietnamese Workshop, Nha Trang, October 31, 2017 : book of abstract / ed.: Dr. Shamil Sh. Afiyatullov and Dr. Anton N. Yurchenko. Vladivostok : Publishing House of the Far Eastern Federal University, 2017.

3. **Ivanets E.V.**, Yurchenko A.N., Trinh P.T.H., Afiyatullov Sh.Sh. Polyketides and echinulinderivatives from Vietnamese strain of marine fungus *Eurotium niveoglaucum* [Электронный pecypc] // The 3rd International symposium on Life Sciences, Vladivostok, Russia, Sept. 4–8, 2018 : proc. and abstrs. – Vladivostok, 2018. – P. 86-87.

4. Menchinskaya E.S., Dyshlovoy S.A., **Ivanets E.V.**, Yurchenko E.A. Cytotoxity of some marine fungi metabolites against cancer cells [Электронный ресурс] // The 3rd International symposium on Life Sciences, Vladivostok, Russia, Sept. 4–8, 2018 : proc. and abstrs. – Vladivostok, 2018. – P. 116.

5. Юрченко А.Н., Юрченко Е.А., Ефимова Е.Г., **Иванец Е.В.** Биологически активные метаболиты гриба *Penicillium* sp. KMM 4672 // Научная конференция, посвященная 55-летию ТИБОХ ДВО РАН и 90-летию со дня рождения его основателя академика Г.Б. Елякова, Владивосток, 11-15 сентября 2019: материалы конференции. Владивосток, ТИБОХ ДВО РАН. 2019. С. 31

6. **Ivanets E.V.,** Smetanina O.F., Menchinskaya E.S., Trinh P.T.H., Yurchenko A. N. Secondary Metabolites from Vietnamees Strain of Marine-Derived Fungus *Aspergillus flocculosus* XVI International Symposium on Marine Natural Products & XI European Conference on Marine Natural Products, Portugal, Peniche, September 1-5, 2019: Book of abstract. Peniche, Portugal. 2019. P.108-109

7. Гирич Е.В., Дышловой С.А., Юрченко Е.А., Юрченко А.Н. Трипептидные и бисиндолбензохиноновые производные из вьетнамского штамма микроскопического гриба *Aspergillus terreus*. XVII Всероссийская молодежная онлайн школа-конференция ТИБОХ ДВО РАН «Актуальные проблемы химии и биологии», г. Владивосток, 6-10 сентября 2020 г.

Гирич Елена Валерьевна

Низкомолекулярные вторичные метаболиты грибов Южно-Китайского моря

1.4.9 – биоорганическая химия

Автореферат диссертации на соискание ученой степени кандидата химических наук